焦点期刊
投稿咨询

著作编辑 著作编辑

咨询邮箱:1117599@qq.com

计算机论文

数据仓库技术在人力资源系统的体系结构

时间:2022-05-20 10:18 所属分类:计算机论文 点击次数:

  摘要:数据仓库是当前信息领域的热门方向。本文阐述了数据仓库、联机分析处理、数据挖掘的概念,并对OLAP和数据挖掘技术进行了探讨;并在此基础上,提出了数据仓库技术在人力资源系统的设计方案。

  关键词:数据仓库;数据挖掘;联机分析处理;人力资源系统

  1数据仓库概念及其体系结构

  数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented)、集成的(Integrated)、相对稳定的(Non – Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策。与其他数据库应用相比,数据仓库更像一种过程,即对分散的业务数据进行整合、加工和分析的过程,而不是一种可以购买的产品。

  2 数据分析技术

  数据分析技术是建立在一定数据基础上,进行分析的方式和方法,通常包括:OLAP、数据挖掘、统计分析、联机挖掘等技术。需要说明的是,数据分析技术并不一定需要建立在数据仓库的基础上,但有了数据仓库之后,数据分析的效率和能力将大大提高。通过与数据分析技术的结合,才能发现许多前所未有的分析结果,并为管理者提供科学的决策依据。

  2.1 OLAP(联机分析处理)

  OLAP分析与数据仓库的关系非常紧密。数据仓库的建立,解决了依据主题进行数据存储的问题,提高了数据的存取速度,而OLAP分析构成了数据仓库的表现层,将数据仓库中的数据通过不同的维和指标,灵活的展现出来,提高数据的展现能力,进而提高数据的分析能力。

  OLAP涉及以下术语:维度(Dimension)、量度(Measure)、级别(Level)、成员(Member)、多维数据集/立方体(Cube)、时间粒度(Time granularity)、星型结构/维度(Star schema)、雪花型结构/维度(Snowflake schema)。

  OLAP对不同维度进行肉眼观察,并非运用更科学的概率论或其它数学工具去测度;而肉眼观察带有主观的“有色眼镜”,故缺乏科学客观的评判手段和方法。其次,当遇到维度过多、数据量过大的实际情况时,OLAP工作效率急剧下降。再次,若自变量和自变量之间存在的线性关系或交互作用,OLAP无法分辨“混杂因子”或找出主要影响因素。因此,OLAP无法完全满足在分析信息系统中最基本、最重要和最关键的要求:面对主题(商务需求)进行分析;而在实际信息处理中,OLAP无法实现分析的主题或任务,则需要数据分析或数据挖掘更强大的分析工具、技术来实现。

  2.2 数据挖掘

  数据挖掘亦称为数据开采,它首先由W. J. Frawley、G. Piatesky-Shapiro等人提出。数据挖掘是一种数据分析工具,它从大量的、不完全的、有噪声的、模糊的、随机的数据中提取人们感兴趣的数据模式、数据的普遍关系及其隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识,提取的知识表示为概念(Concepts)、规则(Rules)、规律(Regularities)、模式(Patterns)等形式,其目的是帮助管理者寻找数据间潜在的关联,发现被忽略的要素,而这些信息对预测趋势和决策行为将起到一定的支持作用。

  数据库中的数据挖掘是一个多步骤的处理过程,这些步骤有:

  (1)数据定义阶段。主要了解相关领域的有关情况,熟悉背景知识,弄清楚用户决策分析对信息的要求。

  (2)数据提取阶段。根据要求从数据库中提取相关的数据。

  (3)数据预处理阶段。主要对前一阶段产生的数据进行再加工,检查数据的完整性及数据的一致性,对其中的噪音数据进行处理,对缺损的数据进行填补。

  (4)数据挖掘阶段。主要是运用选定的知识发现算法,从数据中提取出用户所需要的知识,这些知识可以用一种特定的方式表示或使用一些常用的表示方式。

  (5)知识评估阶段。将发现的知识以用户能了解的方式呈现,根据需要对知识发现过程中的某些处理阶段进行优化,直到满足要求。

  2.3数据仓库、0LAP和数据挖掘之间的关系

  在数据仓库化的决策支持系统中,应将数据仓库、OLAP、数据挖掘进行有机结合,其所担当的角色分别为:

  (1)数据仓库用于数据的存储和组织,它从事务处理系统中抽取数据,并对其进行综合、集成与转换,提供面向全局的数据视图;OLAP致力于数据的分析;数据挖掘则专注于知识的自动发现。

  (2)在数据仓库和OLAP、数据仓库和数据挖掘之间存在着单向支持的关系;在数据挖掘与OLAP之间,存在双向联系,即数据挖掘为OLAP提供分析的模式,OLAP对数据挖掘的结果进行验证,并给予适当的引导。

  3、数据仓库技术及在人力资源系统的设计

  人力资源系统的数据量大,但相对分散,统计功能不足,利用率低。为了更好的发挥其数据的功能,提出人力资源数据仓库系统的设计。该系统主要由ETL系统、OLAP系统、客户端组件系统三部分组成,其整体框架如图3所示。

  ETL系统负责定期的从OLTP系统中将业务数据库的数据导入数据仓库,在导入过程中会依据OLAP系统中模式设计的要求对数据进行清洗和转换,以符合数据仓库的结构要求。

  OLAP系统由三部分组成:OLAP引擎、OLAP数据展示模块和元数据管理模块。OLAP引擎负责读入数据仓库中的数据,并根据模式定义构建多维数据集,使数据以多维格式展示。OLAP数据展示模块负责将多维数据集展现为一个联机分析处理(OLAP)页面,用户可以在页面上执行典型的联机分析处理导航操作,如上卷、下钻和旋转等。元数据管理模块负责对模式设计文件进行管理。

  客户端组件系统负责访问用户的登录验证,并根据访问用户的访问权限提供对应的数据展现。

  4、结束语

  本文阐述了数据仓库、OLAP、数据挖掘的概念,并对OLAP和数据挖掘技术进行了探讨。并在此基础上,提出了人力资源数据仓库系统的设计方案。数据仓库已经成为现代信息领域的必不可少的基础设施之一,我们应该使用好数据仓库,使之成为迎接挑战的有力武器。